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Propellant sloshing may be established by the bending of a space
vehicle which exhibits low structural freguencies. Such propellant
osciliations are of importance, for there is the possibility of extreme
amplitudes if the excitation (bending) frequency is in the neighborhood
cf ope of the natural fregquencies of the fuel, Forces and moments
exerted by the oscillating propellant on the tank are determined due to
forced bending excitation for a liquid in a circular cylindrical ring
sector tank with a free fluid surface. Special cases such as the tank
with sector and circular cross section are obtained by limit consider-
ation. As is expected, force and moment of the liquid increase sharply
at the resonant frequency of the propellant. The total force and moment
are generally less for a given maximur; bending amplitude than for a
translational motion of the same magnitude. The maximum dynamic effects
occur when the free fluid surface is located around the point of maxi-
mun bending displsacement,
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THEORY OF LIQUID SLOSHING IN
COMPARIMENTED CYLINDRICAL TANKS DUE
TO BENDING EXCITATION

by Helmui F. Bauer

SUMMARY

Propellant sloshing may be e€stablished by the bending of a spage
vehicle which exhibits low structural frequencies. Such propellant
oscillations are of importance, for there is the possibility of extreme
amplitudes if the cxcitation (bending) frequency is in the neighborhood
of one of the natural frequencies of the fuel. Forces and moments
exerted by the oscillating propellant on the tank are determined due to
forced bending excitation for a liquid in a circular cylindrical ring
sector tank with a free fluid surface. Special cases such as the tank
with sector and circular cross section are obtained by limit consider-
ation., As is expected, fowrce and moment of the liquid increase sharply
at the resonant frequency of the propellant, The total force and momeat
are generally less for a given maximum bending amplitude than for a
translational motion of the same magnitude. The maximum dynamic effects
occur when the free fluid surface is located around the point of maxi«
mum bending displacement.

I, INTRODUCTION

The constantly increasing size of space vehicles introduces more
new problems in modern space technology. As vehicles lengthen, their
fundamental bending frequencies become lower; as their diameters become
larger, the natural frequency of the propellant becomes lower. These
trends restrict the choice of the control frequency value., Counsiderable
and acute problems result from this close grouping of frequencies because
of the interaction of structure, control and propcllant sloshing,

Performance considerations make necessary a design exhibicing low
structural frequencies. Therefore, the effect of elastic vibrations of
the vehicle structure upon the propellant sloshing and the control system
becomes more critical because of their low frequencies and ¢he overall

low damping.



Although the sloshing frequencies are even closer to the control
frequency, the effect of propellant sloshing upon stability can be
handled more easily than the effect of the elastic structure provided
the phases are chosen properly., Of the great many problems involved
here, the one of the propellant sloshing due to bending vibrations
will be treated.

In the tanks of a missile or space vehicle, sloshing will seriovsly
affect the performance and stability of the vehicle, in some cases, even
causing total flight failure. Since more than 90% of the total weight of
a vehicle at launch is liquid, propellant sloshing represents an area
which needs special attentio: even in the preliminary design stage. The
tendency in modern space tec..mology is toward a continucus increase in
size of space vehicles making investigations of this kind mandatory.
Therefore, for a realistic dynamic stability and control analysis, even
the effect of the oscillating propellant due to bending vibrations of
the structure hkas to be considered.

For space vehicles, which exhibit low propellant and bending
frequencies, subdivision of tanks might be of importance to reduce
the vibrating sloshing masses and increase the Eigen frequency of {he
propellant, thus moving it further away firom the control frequeucy.
This indicates that the sloshing frequency is becoming closer to the
structural frequencies., In the following, therefore, the liquid oscil-
lations in a c¢ylindrical tank with circular ring sector cross section
will be treated with respect to bending oscillations. From the results,
one can obtain by limit considerations the solutions of the most im=-
portant cases,

IT. TFORCED BENDING OSCILLATIONS

The flow field of the liquid with a free fluid surface in a circular
ring sector tank with a fiat bottom, due to forced hending oscillations
of the tank, can be obtained from the solution of the Laplace equation
A @ = 0 and the appropriate linearized boundary conditions. The cross
section of the tank was considered to be always of identical shape.

This will certainly be enhanced by the sector walls. Furthermore, the
undisturbed free fluid surface is assumed to stav in the same plane.

The bending of the walls of a tank of an elastic space vehicle can
be degcribed as a super~position of translational, rotational, and bend-
ing oscillations with a clamped-in tank bottom, This is justified since
the theory is linearized,

The response of the liquid due to translational and pitching excita-
tion has been treated previously [1]. The problem left to be solved is




the response of the propellant due to bending excitation with a clamped-~
in tank bottom. The boundary conditions at the tank walls as well as at
the free fluid surface (Figure 1) are for arbitrary wall oscillations
and are given in linearized form as:

S 14 %o (2) eigt cos O .
- = at the tenk wall v = a, b (2.1)

roolie yo (2) eigt sin ©

&

gg -0 at the tank bottom z = ~h  (2.2)
5 0
oy o = 440 yo (2) eth at the tail sector wall ¢ = 0 (2.3}
19 f-i %o (2) elgt sin 2
== int at the tank sector wall (2.4)
rop iQ yo (2) e cos 210 Q= 270
-
2 |
%?g +g gg = at the free fluid surface {2.5)
. z =0

where the upper and lower line on the right-hand side vepre-ents excita-
tion in x-direction and y-direction, respeciively.

The Green fuuction was used in thi: treatment, since in most cases
the displacement curve of the bending structure is not analytically known,
and since the representation of the solution as an integcal is more ad-
vantageous for the numerical evaluation own high speed computers,

Separating the motion of the rigid body with solidified surfsce, the
potential becomes

iﬂ r Xo (2) cos ¢
gu g+ el0F (2.6)
i r yo (2) sin @

We obtai.. for the boundary conditions of the disturbance potential
the expressions

%¥-= 0 for r = a, b; 2.7



Cane

T
>

&
%%=o for ¢ = 0, 25 (2.8)
-i0 x4 (2) r cos @]
X = ’ for z = -h; (2,9)
-iQ y& {2) r sin ¢-{

10 r cos @[0% xo(0) - g x4(0)]
- Qg'[:! = ) fOI’ z2 = 00 - (2010)

(10 r sin ©[0Z yo(0) - g y4(0)]

Instead of the Lapiace equation, the Poisson equatior of the form

-iQ %8 (2) r cos ¢
A\l[ = - i ' (2. 11)
~iQ y8 (z) r sin @ | -

has to be solved with the above boundary conditions.

The solution of the Poisson equation which satlsfies the first (2.7)
and second (2.8) boundary conditions is of the form

00 o '
\ | O x , =
V(x, 9, z) = 2: Amn(z) cos Kﬁa ?) Cm (gmn 3= A(z) cos ¢ C(o)
: 200

m=0 n=¢ (2.12)

where
m_\°mn a/ "~ m \"mn a/ m_\°*mn/ “m \°mn/ m_{ mn a
200 20, 20 20 20

The values Emn are the positive roots of the equation

= Y ¢ ' TR ' =
AE.. = ng-(g) ngm(ké) J&_(k.&) Ym__(é) 0.
200 20, 20 20 (04



The expression k = b/a is the diameter ratio of the inner to the outer
wall.

Hexre, for the sake of simplicity, the double summations and the
indices m and n have been omitted. The abbreviations are:

1,

50 P

Py
=

S

T
° pro— . 3 i ~,
s e ) a

For the determination of the unknown coefficients Anpns one expsands
the right-hand side of the tank bottom and free surface conditions inteo
Fourier and Bessel series. The cosine and sine can be expressed as

[+.¢]
cos @ = ;{:%m cos @ with a = 12 & 3 a za(f-) sin & a s {0 = 2t)
— a " (mZx2=07)
=0
-l n
- o- “" r L 0 L
sin @ = ¢ cos §with ¢ = cos O _— 20f (-1} cos O l}.
- . (o] 2 jul 2’(2 &2
n=0 ’ . (m - )
The radius r can be expressed in the form
. ]
A
= = 1
r ji,bm“ C{p) m=0,1, 2... {2.14)
=0
in which the coefficients are
gmn
a [ p2C(p) dp
]
b o = kgﬁ“!}: = 2a No (gmn) o
e y
gmn 4 . 20% ) C‘g/kk —i_«
- <
- f oc2(o) dp |y bon) | 7T | AN Y
kgmn :
(2.13)

(See Appendix)



WL

The solution of the Poisson equation can be obtained from the
differential equations of the %nu

& @ 2 3

\ 1" . B ! o m_
L, }2 Amn (2) mn(z) i %gjiﬂnn ;) cos \ 2 %)
m=0 n=0" 20

(2.16)
“3Q y8 (z) ¢ gin @

With the above mentioned series cipansion, we obtain an infinite number
of ordinary differential equations

- (-i0 b a xf (2)) .
" - —gh T 4 -5
A" (z) - —F A (2) i . €2.17)

-3 1
iQ bmn cm v6 (2)

(m, n=20, 1, 2...)

These differential equations are solved with the Green function., From
the boundary conditions at the tank bottom and free fluid surface, one
obtains with the series expansions {(2.13) and (2.14)

£ ' (a
H :LQ bmn am Xo ( h)‘
Al (-h) = j .
-1Q bmn <, y& (=h)

(9% %0(0) = g x4(0)] i%b__ a
] - 2 ’ = mn m
g Aﬁn (0) - &% A {9) . ' .
(9% yo(0) ~ g ¥8(0)] iab

) eiﬂt eiQt
A translational motion xp(~h)” or ya(=h) is superimposed.

faking xg(=h) = 0 or y§(~h) = 0 the clamped~in condition is obtained,
while for x5 = 0 or y§ = O the translational excitation case results.

The Green function finally is

gmnz agmn
= = a B a
i=1 for -h < z 5‘§
i=2for L2550
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It is at z = {

Gl(gag) = G2(§:§)0

The first derivative of the Green function has at z = { u discontinuity
of unity

Gl (6,8) - & (4,0 = ~L.

With this we conclude that

.
Eon g Smn 2 . £ma 4 ) €
O,e a - Q0 e a + By e a . Bz e & = 0,
[ 4 [
; smq_E ¢ £ on £ : . Eun s ; _ imn >
1Y a mn a mi a mil a
A = Oz ~>=e - B P + B — e = -]

€. €
<g.._ii‘£. - 93> Op = <3..._...amr". + Q2 Bz = 0.

From these four linear equations of the unknown values 05, Os, B, Bz
one obtains

h

h
© o imp ! o 8 E
2, 8 {sinh <%mn §> + -%§§~’ cosh ‘-gl;>}

g ' N
2 m%lﬂ cosh <§mn *g) . {1 - 1}2)




8
£ _h £
2 L igg mg cosh <§mn ~§>+sinh (gmn%}
51’:"“ e a a2 a E:}
' 3
2 2B osh (/E’mn 3) (1 - 12)
\
1+§“‘“‘ 2 cosh mn ¢ +h
op o -\ TapE) T cosh | 6 W)
‘ ‘ .
2:—?—1 cosh (gmn g) (1 - '(]2)
£ & ¢
(-—’g;‘;-e— - 1) % cosh [-‘53 t +h>}
o = -

: :
2 -I—;%l- cosh <gmn %) (1 - 193

where §| = 5&' is the ratio of exciting-to Eigen-frequency, and
mn

2 mgg

mn 3 Iy
wmn . tanh < mn a)'

The Green function is then

‘ E 8
{sinh <Ergp_ §> + —Ii—g-z—- cosh <§mn '5 }
a
3

h
..l;‘.‘.}. cosh <§mn-5 (1.- 1%)

z , h
G1(z,8) = = %% cosh [Emn(z + E)-)

for =h < 2 < ¢, (2.19).



, E 8
(sinh (gmn f;) + —E%g—- cosh (gmn i—)} R
- uz cosh [gmn (E— + Z)}
3

Gg(z.8) = = “——
|-
= (1 - 143

for { <z <0, (2.20)

The solution for the homogenesus boundary conditions in then:

;

la \ [sinh ( mn £> + -——5-* cosh (gmn -S\]

A _(z) = ifb % o

mi mn \
mn mn

c —_ cosh <~’;" h/ (1 - T]2)

L7

ForxB(L) tom
f t JBCE) cosh[ §+h)] g +

-

. Tm} cosh[ mn( >-l 'qaj {xS(Q} [sinh (g‘““ §> .

) . ,\ Eon )(1 - 1%) y8(6)

m

+ --«-5- cosh (gmn Q\-i ag. 52.21);

The solution for the inhomogeneous boundary condition

A (+h) = 1

! - 2 (1)
gAmn (0) - Q Amn (0) = 0
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is

a [—-*-g'-g cosh (gmn > + sinh <§mn z>]
igb 2 [ ™\ 1 3% a

¢

" -—23 cosh <§mn %) (1 - 9%

and the one for the boundary conditions

' - =
Amn (=h)

' { - 02 =
-gAmn (0) a Amn(o)

is

S L E x| coen (gan h})

mn
¢ yo(® - Bz y3@1| T (ﬁmn )(1 - 13)

The solution of the differential egquation (2.17) is then:

a
inab -} M 2
mn e t z
A L(2) = sinh { ®mn ;) +

. gmn cosh <E‘mn a) (1~ n®

g [( x4(=h)
+ E"I;“};n‘é”" cosh (Emn §>] . c:,( o +
: yo(-

]2 o ] oo [ 3]

(2.22)

(2.23)
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. [f h: zzz} [sinh (gmn §> + fon B cosh <§mn é)] at +
AR

e ([x0(9) - Bx x4(0)]
+ 22 ° 02 } . (2.24)
{yo(0) - g_ ¥4(0) 1),
02

The velocity potential is then

10%xc{z) r cos @

it
P(r, 0, 2z, t) = e 10yp(z) r 8in o) *

3

+ E: A (z) (}mn cos ( e (2.25)

=0 nNO

The term in front of the double summation satisfles the boundary
conditions at the tank walls, while the terms of the double series
vanish at the tank walls, The double summation together with the term

in front of it satisfies the free surface condition, if ome gonsiders \
the resuits of (2.13), (2.14), and the Eigen values win = 5n§££ tanh gmn%)

With this velocity potential, the free surface displacement, the pressure
and velocity distribution, as well as the forces and n~ments of the liquid
can be obtained by differentiations and integration with respect to the
time and epacial coordinates.

The surface displacement of the liquid measured from the undisturbed
PO si "f.‘f.l.vtl;

. l' fo(O) r cos ) AN ( /
” it \" s g & m '\
. , + A 8. L) cos { 0= o).
“rg ® L [vo(8) r sin f ZJ "N W N ﬂ> “*\20 %,
e =l

C(2.26)
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The pressure in a depth (-2} is

x0(z) r cos @]

%&_y " .o it
p=-p 5= 507 ) pamel

ZZA(Z)C <mn>cosg—> - pgZ.

m=0 n=0 (2.27)

At the outer tank wall r = a the value of C (gmn é) is 2/x &__, while
moX a mn

b it is C <k‘§ >
m_ mn
200

At the sector walls ¢ = 0 and ¢ = 2nQ, the cosine function has the
value 1 and (~1)®, respectively. The pressure distribution at the tank
bottom results from (2,27) by setting z = ~h,

at the inner tank wail r

From the pressure distribution, the liquid forces and moments are
determined by integrating the appropriate components. In x-direction,
the force is: '

270 o % 0
= - bp,) coe - in 270l dr daz.
F}{ f f (B pa upb) cos @ de dz J f pcp = 2n0 sin 270 dr dz
o =~h b =h

The first integral represents the comtribution of the pressure distribu=-
tion from the circular walls, while the remaining integral is due to the
piess"re distribution at the sector walls., With the liquid mass

= px a® h(l - k%), the 1iquid force in x~direction is:

%‘; fxo(z) dz\'

~h

F o= o~ eiQt +
X

I G

L\
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00 -] (o)
T ™ ein 20 _
m=) n=0 ~h
4072 2 ] .
(@2 = 4B [ﬁ e Tk Cy K Emn>] * No<€mn>> (2.28)
LY ‘mn ——
% !
where
-
N (e ) = E‘L f C (p) dp. (See Appendix.)
mn
kg
mn
The force component in y-dimzztii;on iz with
270 o o a o
Fyﬂff/{&pg-bpb]sinqudzd(p-b‘[quwodrdz
-h

@ .-h

a o

. r

TfJ ptpgzmcosbtocdrdz
b h L

given by:

F = mQ® emt
y 4

3
o
Q
B s Pl

f
J yo(z) dz
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o0 00 m O -
i [1 = (=1) cos 2n0]
+ Z Z 270 a h(l -~ k2) f An(2) dz.
=0 n=0 ~h

1

402 2
’ <(m2 - 40F) [1{ E ke, (k gmn)] + 1\lo(g’mn)> *

mn -
04
2 (2.29)
0
iQt
The term mQZ eh f ¥0(z) dz {in front of the double summation)
~h

in F, represents the inertial force, i.e., the liquid force with restraint
surface, The liquid moments with respect to the point (0,C, - %) are
given by

21 ©
- ‘ : o
My- j f (apa-bpb) -~(2+z)cosq)dcpdz+
o =h
Zm/g a 0
2 h
+fJ P, T cos @ do dr ffpcpgzﬂasinzm(2+z)drdz
o b b -h
and
1101 a

0 2y
- h ‘ 3 - 2
df (a P, b pb) (2 + 2z) sin @ Q0 dz f f P ¥ sin ¢ do dr +
-h o b

2
wo-- |
X
o

Q

a (8
h : h
+f f(2+z)p<pgodrdz~f f(2+z)p(p:2mcdszmdrdz.
b ~h b -h ‘
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is the goment about the parallel axis to the y-axis through the
point (0, O, « f) and M, is the moment about a parallel axis to the x~axis
through the same point., The first integral represents the contribution
of the pressure distribution from the circular walls. The second integral
is the contribution of the pressure at the tank bottom, while the remain-
ing integrals can be easily identified as the contribution to the moment
due to the pressure distribution at the tank sector walls. The moments
are given by

0
1 ﬁ,g , a2x0(—h)(1 +'k2)/} ~sin 270 cos 270\,
o k] ¥ + z)xp(z)dz + T 6 + T |
~h i
M = mQ® eiQt
y
o 4+ 8y (1 + k) ginZ 2nCy
\ 2 =
m (x)
& 00 =
b (-1)m+1 sin 250 4o a2 20) (y)
+ (m2 - G055 N2 (gmn) Amﬁ (=h) +
o 10x0t a h(l= k) | /

n=0 w=0

4o 9 ‘ (2oz) .
N [m [E?T kO (K gm"} "N g*““)]’
3 nn za
. (%) )
[ (¥) sin 270 (L + k + &%)
Jf (2 + z) Amn (=) dzf + mg % 0L (1 + k)
~h

- (2.30)
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and

] |
a2(1 + k) xc(~h) sin? 270 )
4h 27

M = m0® L
I.X 2 <

. 0 ,
L h a®(1+k®)yo(~h) sin 270 cos 2n0
k h f (2 + 2)yo(z)dz + e 1 - 522 )

N il - (-1)" cos 2n0] 40P a2 ) ( 25
+ZZl ﬂanaha-ka)'g(meuaae)%z (-h) Nz (g )+

n=0 m=0 -

m
402 (e
+[ - 4OF (ff £ -k Cr_g__ (k g 5) TN (gmn)]
20
o ) |
h G2 ) a4 [1 = cos 2n¢] (1 + k + k?)
\[(2 + z) Amn (z) dz.} + mg = 3\ s S
=h
, - (2.31)
gmn '
where Na(gmn) = Elhg Jf 0% C(p) dp, The last term in these results
mn
kg

mu

representq the moment of the undisturbed liquid about the point
0, 0, - -) mhe velocity distribution is:



st S naons

r (‘ \
1 1Q x0(z) cos @ ; o o (x)
at !/ \
ur = ei - \) 19 i I/ + Z >’_‘ Iflzl)
! yo(z) sin @); =0 =0
r /
J iQ x0(2) sin @ o o (x)
_iqt N’ 5_‘ ' (¥) in (A o)
u¢ = - @ + 2; /, Amn (z) sin (2a ®)
l-iﬂ yo(z) cos @ n=0 m=0
flﬂ r x4(z) cos @
i1t
W= e

;
E

it r yd(z) sin @

+Z ZA'(Y)(Z) cos (-*" @)C (Emn )
n= =

17

The velocity distribution in the tank is obtained by omitting the

first term in u, and
motion, Making x (z) = constant or yo(z) = yo
results for translational oscillations will be obtained [1].

o=

= =

IIX. SPECIAL CASES

These terms represent nothing but the tank
constant,

the

Tanks with circular cross section are at preesent the most frequent

.containers,
intersection of tank by radial walls,

Tendencies in space technology, however, point toward the
Subdivision of a cylindrical tank

inve four quarter compartments is a possibility to reduce the dynamic
influence of the propellant sloshing upon the stability of the space

vehicle,

Concentric containers could be beneficial, if one could choose

their diameter ratio in such a way that the phasing and sloshing mass of
the propellant inside and outside is such that their combined effect

cancels,
ready presented for annular cylindrical tanks ([2].
shall restrict ourselves to the sector and circular tank.
results are gilven in Table I.

The theory of liquid motion due to bending tank wall was al-
In the following we
The main
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A. S8Sector Tank

If the diameter ratio k = b/a tends to zer~, then the results of
(2.2) represent the motion of a liquid with free fluid surface in a
tank with circular sector cross section. The zeros of the determinant

%% (t) = 0 are now obtained from the equation J&(e) = 0 and are noted
i = L
by emn' Furthermore, the function C{p) is substituted by J(p) = Jm_ﬂemn a)’
The in:tegration constants bmn transform into 20
mI
2

a f p= J(p) dp
- ¢1
bmn= € m3n=03 1, 2,0-;.-..

mn
€ p J%(p) dp
mn
o}
which is
(o]
I' (m/40 + 3/2) (m/20 + 2u + 1) T (m/4Q +p - 1/2) 5 (emn)
' (m/4C - 1/2) I' (m/4o + p + 5/2) m/20 F 2p + 1
1.;mn = 28 = 2 2
. 2
7 e . (1 = m/4o? emn)‘%&- (e.)
20
(3.1)

In the force components, one has to omit the singular sclution at
r = 0, Therefore, the value 2/x gmn -k Cm (k gmn) has to be substituted

20,

Y. The expression No(gmn) transforms into Lo(emn), since

by Jm ( €mn

20

\/&(p) dp isk/wJQp) dp. Similar results are valid for Ng(&mn), which

transforms into Lg(gmn). The velocity potential, the free fluid surface

displacement and the force and moment components are represented in
Table I,
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B, Circular Cylindrical Tank

For a container with circular cross section it is 0 = 1, This
represents a container with a side wall in the ¢ = 0 plane from r = 0
to r = a, The values a,, by, are then:

a =a =0, agz = 1,

o] m a4 ~1

- lim _ & 8in 0
7x(1 ~ 3?)

if one chooses an excitation in x-direction, the sidewall does not
disturb the flow field, The expression Bp, is cbtained from (3.1) with
the recurrence formula of the Bessel fungtions x J;(x) « v Jy(x) =
“ % Jy.1(x), which is for x = ¢, as the zeros of the equation Ji(e¢y) = 0
and with the consideration of the singularity of the Gamma Function at
the argument zero,

o = - 2a
2n (62 -'1) Jafe ) °

The velocity potential is therefore due to bending excitation in
x~direction: 4

#r, ¢, z, t) = 10010t

a cos @ {ﬁ-xo(z) +

00 .1:_; 2
‘2 E: Ji (e, )07

2 _ €n h -0l
= (en 1) Jl(en) =% cosh (En a) (L - 9%)

€ 8 .
. { (}inh (en §9 +-;§§~ cosh (ﬁn §;> . <%6(-h),+

S . re -
+ J x8(6) cosh[w;(ﬁ%—h)]d§>+cosh{‘;~(z+h)j .

 wh
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o
€ g S 7
. (f <88 [sinh (en -2*) + angz cosh C—%—%J ¢ +
z

&

|
«v—f-[xam - & x¢ <0)J )]} X (3.2)

The free fluid surface displacement and the force and moment of the
Tiquid are represented in Table 2.

It can be seen from the free fluid surface displacement that
with increasing exciting amplitude xo(0) at the free fluid surface
location the surface displacement increases, With increasing accelera-
tion the displacement of the free fluid surface decreases,

In the liquid force the limit value is

+1 sin 2x0 - 4O° , 1
 lim 1{(-1)‘“ 2 ?«x [m2 ~z J (e )+ Lo(emn)J} = Ji(e )
.‘a__) > —r——
m-» 2 20

and in the moment the value Lg(én) = Jl(en)lﬁi and

nt+l sin 270 802 |
i [P 2 ot
m - 2

In the numerical evaluation, a bending displacement is considered,
which has the form

2
x0(z) = = 5= [(io (&) - 6].
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Here a tank of height H = 5a is chosen (Figure 2). The maximum
amplitude of this displacement is x,/, = 1/10.

Figure 3 exhibits the fluid force versus fluid height ratio h/a for
various exciting frequency ratios {|y = @/wj. The fluid height has, of
course, congiderable influence, since the exciting amplitude is changing
along the z~axis. The moment of the liquid (Figure 3) exhibits similar
behavior.

The total force and moment are generally less for a given maximum
bending amplitude than for a translational motion of the —ame magnitude,
The maximum dynamic effects occur when the free fluid surface is located
around the point of maximum bending displacement. With increasing fluid
height the contribution of the sloshing mass decreases, while the inertial
force increases, With increasing exciting frequency this inertial force
becomes larger. Close to liquid resonance therefore the inertial effect
is not strong enough to overcome the decrease of the effect of the slosh~-
ing fluids due to the diminished local exciting amplitude with increasing
fl?id height. Pressure and velocity distribution can easily be obtained

3l. '
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APPENDIX

A. Rcots of Certain Bessel Functions, TFor the previous results the
Toots of

Tp (8 Y;Jm(g)

200 20
B (8) = =0
20

Jr;_l_”(ke,) Y_,;_(kg)

20 2C

have to be determined fer m = 0, 1, 2,.......and arbitrary 0 < k < 1,

For most of these roots J. McMahon represented asymptotic expansions

[4). The smallest root, however, was not known until H. Buchholz pointed
out its existence [5]. D. Kivkham [6] gave the rcots of the above equa-
tion in a graphical way for m/200 = 0, 1, 2, 3, 4.

B. Reprasentation of a Function in Bessel-Fourier-Series

The determinant Cm is

20
‘ﬂg_ (Amn T) YéL.(%mn t)
20 20
Cﬂm (Kmn ) =
20
J& ( mn a) Y'.17_;3’_.0\mm a)
20 yio
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Its derivative 1is
! 1 ‘
LA O} o Oy ©
20 plo’
! =
Cg_ (Rmn r)
20
H KA
Jg“ (xmn a) !;_ (xmn &)
20 20

which vanishes for r = a and r = b, that is,

' - ¥ ' o=
c (an a) = c, (%mn b) =0

20 2a
for ¥ = a, the derivative of Cm
20

vanishes identically, while for v = b the roots (g ) = (% a) make it
vanish.

A function £(r), which is plecewise regular in the interval
b<r £ a,

satisfies the Ditichlet condition and can be expanded into & Begsel-
Fourier series of the form

O@
£
f{x) = ZJ b( ) C (7Mﬁ ° (=0, 1, 2,c0s4)
n=( 2&

The unknown coefficients of the expansion will be determined by multiply-
ing both sides of the equation with r C (X r) and integrating from

2&
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r=b tor = a, Here 7‘mp and Ap; are different roots ~£ the determi~
nant Am = 0, It is

——

20

o0 b a
z bmn b/‘r (3&”(7\mn r) C._m_“o\mp r) dr = fr f(r) CIE__(?\IDP r) dr.
n=0 a 20 200 b 50

With the integral of Lommel, we obtain

dc_ (A 1)
r ’;—l& mp
2 _ a2 = . .
O\mn 'Amp) f T ngmO\mn r) C‘.‘.‘.,.(?\'-“P r) dr = r Cr_n__(?\mn 1) -
20 20, 201 r

dcgl_“(?\mn r)

20
- CE_O\‘“P r) == (n # p)

20

and the integral on the left~hand side is (

' - S S
f r Corg__(%mn T) C.I‘LO\mp v) dr = (.Asm - .A!ﬁp) {%mp CL“_ O 1)

20 20, 200

(F)

Cn'x (}\mp ) - ?\mn c}_t}_,_(?\mp r) Cé“(")\mn r): . (p #n)

20 20 20

L S |

The integral is zero, if the conditions aré satisfied:

' = ! = ! . -
C, (?«mn a) = Ch (7\mp a) = Cr_r}“(?\um b) = CEL...O\“‘P b) = 0,

% 20 200 20
| (e)
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Those terms for which 7\ 7‘7\ vanish, and one obtains for the

coefficients
* a
r £(r) Cg_x__(?\mn r) dr
(£)_ b 20,
bmn . (H)
a .
v 2
f e CEP.._.(?\m“ r) dr
b 20

For p = n the equation (F) will be an indeterminate form, which will be
treated with Taylor expansion or the rule of L'Hospital, and iz with
the Bessel differential equation for (:m

P

20
- r¢ (A _r)dr= r? 2 (A _r)y|l- ""‘"”"""‘2"‘"‘""‘m2 + C'2(A )N
m_- mn 2 m_ mn 4OR A= 12 m_"'mn r } *
20 20 it 20

: (1)
We thus obtain in the interval b <r < a

[ a® \
[ O (- g 6 o]
s 3&‘ mi 2a
2 . =
fr ch__(?\mn c) de < g
b 20
ba bed ma [
"% P QgD Y G P P
2% n 26
. | [&)

which is due %o the boundary conditions

a | ' | ‘ .
2

fr C:i (gmn ;) dr = ?;gg [“54&2 (gfm N W) B C"(k g )(k"a - l;oc‘?)]
Y b7 im0 Pmn 35

| ' (X)
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Here, Cm (gmn) = ;—-2—-— is the Wronskian determinant. The coefficient
2-—-011 mn

bn(lfl)‘of the Bessel-Fourier expansion can be determined from

a
2 82 fr ) ¢, (&, %) dr
b 20

(£ .
T"’"( -“‘2>-cg<k (S 2 . m,
g §mn 408 E, E’mn 407
20,
.a
The probiem that remains is the solution of the fr f(r) Cm (gmn ;) dr.

b 20

Most of the integrals in the previous treatment are of the form

f zK Cv (z) dz.

These can be obtained with the help of the lommel functions S (z) or
by integration of the series expansion of the integrals.,

K . R K oyt K
fz um_(z) dz = Y!‘.‘}... (gmn) J z J&_(z) dz Jg__(gmn) fz Yﬁ_(z) dz.
‘ 20 20 20 2Q 20

()

Integrating the first integral term by term and collecting terms of
Jv +2u + 10 one obtains

1

K K+'v+1 % (vi2u+1) T ( + W)
i 2T (555§ J
fz JV(Z) dz = m V'H("‘ 3 V+2|J-+1 (N)

p (dKiL -12§+1) u{“’a I (= u)

where Re (K+u+1) must be > 0 if one integrates from z = 0 on,
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The second integral is obtained by termwise integration of the
series expansion of the Bessel function of second kind

It is for (“Z}a- integer)

m

Eemiamad - l m
P k418 Ean-n! Y@
szY (2) dz = = B 2 -
v m-—-. N - n n‘ L4 e Dt - E‘-— \

200 =0 Be LK 2P =5 +1
m
5,30 T *

% L1y
5,K *1 Z (1) (53
{

B m_ .oy m 2
+u) . (m+l<+2p,+1)

: {lng-—%\l/(u+l)-
=0 Y 1e'%

m
) m+2u
. kel 2 -n* B
1 m 2z 2
"-Z_\V(U’-FZG-’.I)} - 7 ;_, } m P om0 s
e ("‘2‘&‘4‘!1)0(?&"‘5(‘*‘2“"'1)

p=0
(0)

where V(z) represents the logarithmic derivative of the Gamma function

‘V(Z)’d(lngzm)“””(z"l)Z VN EER ®)
Ao

and 7 is the Euler constant. With these results, we obtain the inte~
grals as mentioned in the text.

m_ *mn a

A 2)
f 3¢ (b =) dr = a® Nam (&)
b 20,

Q

H " (%‘j |
J C, (¢, 3) dr=alo (&0 ¢
. .

mn
Rt

20
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It may be mentioned here that some of the integrals in which p is 1 ~ v
or v + 1 can be obtained from the recursion formulas

[1-v _ 1 ~v - 1-v -V

J 2 Cv (z) dz = = z Cv -1 (z) = -~ 2 Cv (z) ~2 "V Cv(z)o
N

i v+l _ v +1 S v+l

J 2 C,(z) dz = - 2 C, 41 (&) = vz ¢, (z) -z ¢, (2).

C. Limit Considerations for k — 0

The previous reguits can be applied for cylindrical tanks with cir-
cular cross section by letting k -» 0. The zeros of the determinant

m
V=% ,
35 (8 (|
1 1 [} * O
A, (B) = 130 (k) vy (k £)

approach  for k - 0 the value € for JI‘:I = 0, This is due to the fact
thtat 55 '

Vv
X

2 1 (v + 1)

JV =) =~

for small x and

v
-2 D{v
Yv (*) ~ T %

for v > 0 and small x, Instead of the value

c (& X

m_""mn a
20

in a ring sector tank, the values of J (Smn i) have to be taken for a
) o

s
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container of circular sector cross section,

With (N) we obtain the values Lo, L for the sector tank.

52) N

20t o2\ (e ) LI
Lo™ (€) e Z Jou +%-‘- +31 ™ (Re 55> - 1)

u=0
ey ré&+d & Era+nrCip-D
L2 (e ) = el 2 2 . N
2 mn e r @ . _l_) r (= + +.§.) o 4 2mn+
mn GG T 2 u=0 aaTH T3 50 T M T

The other values can be obtained in a similar way.
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TABLE I

(F]
]
(e
r-r

cctor Tank

Free Surface Displacenent:

20 iqt

= Qe | {rxo(0) cos 0 \ N
T e [ \ryo(0) sin cp} + 2 Z_J A (0 JLn__(emn a) . cos(5y

Fiuid Force:

00 o0
+1
) 2 10t x0(2) (-1 sin 20
Y = maTe th[ ]dZ+ZZiQﬂaha ‘

n=1 m=0
4P m_ o (x)
0
° [m2 4OBY Jg_femn) + Loza ( mn)] AmQY) (2) dz]
20 =h
Q o 0 0 o (%)
Fy = ngemt[%f {yo(z)i dz +2 Z NG 1)9 ;o(sx im. =1 }11 fAn(lzl),(z) dz,
~h n=1 m=0 =h
m
[ b2 L, 20 1
‘| (m2 - 4oF gLfemn) “o (emn) J
¢

Fluid Moment:

O
1 O h xof=h)a? . . sin 2xQ cos 2q0
hJ(zl*z)x(z)dz+ T (1 + )

-h

M = mQ"‘?emt

+ Yo-h)a?  sin® 2mor
th 20

?
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m
+ ; (-1 sin 20 /402 a® 1,20 (emd. o) (py 4
- 1, 0xah (me ~ 40°) mn
n=1 m=0 '
m o] (x)
4oZ : (2 h (¥) ] a sin 20
+ [(mz - 4’5’.52)‘]9”("%“) + 1‘6 (Gmh}]_a \/’\ (5 +z) Ay (2) dz 44. mg 3
T 20 -
[ xo(-n)a? s  2x0y
iqt 4h 250 o
M = -mﬂae 2 . .. +
=-h)a 270 2 1 h
% xggm:z___ Q - 8in2 72?&8 23 +E f(f +2) yo(z) dz
A ~h
. oo‘ oo[ o J 4052 (x) m_
(<1) coe 270l = a< (y) 207,
+ Z iQndOah '[(ma - GO2) Ay (-h) L2"7 (€pg) +
n=1l m=0

(x)
(y)

| & 3
+ <~—-2--—-*(m ao_tea&gs' ;Elm(emn) + Loza (emn)>° f(% + z) Amn(z) dz] -
200 ~h

a {1 - cos 2;x]
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TABLE II

Circular Cylinder Tank

Free Fluid Surface Displacement:

. . -

= 0% a cos @ MOt | 4 ' Ju(e,

z = e ’ xa(0) + 2 > e % -
=16y = DJIa(e ) (FHeosh(e =) (1-17)

)
. ‘;:2'; x4(~h) + x8(¢) cosh -e-tl (E+h) |dE +EE- cosh “n .
ag a a a
~h .
-[Xo(o) - E‘%EQLE}

Fluid -Force:

(o]

— 2
Fx = mneemt {% f (z) dz + 2 ZJ > nh T = 3
ol (en - l)(t’-:n ;) cosh (en ;)(1-1] )

g € t
..[xc’,(-nh) <£:: [1 - cosh <_.‘.;_b>] + %2 Sint,l (ié:)) +
f <sinh<€ Z) + -—-—2- cosh \-——z->> fx" (g)cosh[--;Il ('_‘;!h%dg dv]
€ ‘ . €
+ [xo(O) - & x(')(O)] sinh <—5§> + fcosh [—;—l (z + h)] ~
-h
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Fluid Moment:

o

_ 2.2 iat fx,«,g-eh.z r 1.z

My = ma“Q%e A Y- J (2 + h} X,(2z)dz +
«h

(0]

' 02
2 2 h h o4
Z - LRI o @@yl
] (e=-1) ((—:n a) cosh (e a) (1 - 5%)a

veny | (B 2B by (ah_ , ag \ .
{xo( b) {<2€n 6n9> + cosh (en a) 26n + en.QE}

a

2 2 ?‘ |
- h, [2a%  gh a ' : n .
sinh (e D) (“-'}*._ven + & } + e JEXE sinh | g)ag +
J

o ' o _
+ ‘g: fxg () cosh (—f g)dg +% f[sinh Cf z)l.
«h ~h

H en engh 2 /en
. f xg(g) cosh [—; (;ﬁ)]dg]dz + 5w [coeh \‘7; a) .
-h

4 ¢

€ €
. [x1ce) coon [-;‘-‘- (¢ + h>~]d§ +4 [ {mh [‘f 2 + “3'] ~

«h =k

33
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F‘*. € hg 9 €
. J x;(ﬁ) sinh( §>d }dz o+ — 2a$22 [cosh [‘-—-a- (z + h)] .
z
o 5 ) - "
. fxg(_t,) cosh C“-E- g}&f;sz + f I_z sinh <‘-§ z>,
2 «h
H € € 8
df x(')’({;) cosh l}él ¢ :ldg] z + ——-2— [z cosh <—— >
<h

[¢]

z . .
. f xg(g) cosh [-’g-" (¢ + h):‘d(’,]dz + \[‘ [z cosh gf&: (z + h)],
=h

a € € 8 . e,
. J xc’; (€) sinh (..él §>d§]dz + ;’%é"‘ ' [2 cosh :L? (z + h)] .
Z ' .
. ‘/1 Xg (g) cosh <€_,£, C)d g]dz - (Xo((}) - Ml)
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